Originally a speculative pattern in ecological networks, the hybrid or compound nested-modular pattern has been confirmed, during the last decade, as a relevant structural arrangement that emerges in a variety of contexts –in ecological mutualistic system and beyond. This implies shifting the focus from the measurement of nestedness as a global property (macro level), to the detection of blocks (meso level) that internally exhibit a high degree of nestedness. Unfortunately, the availability and understanding of the methods to properly detect in-block nested partitions lie behind the empirical findings: while a precise quality function of in-block nestedness has been proposed, we lack an understanding of its possible inherent constraints. Specifically, while it is well known that Newman-Girvan’s modularity, and related quality functions, notoriously suffer from a resolution limit that impairs their ability to detect small blocks, the potential existence of resolution limits for in-block nestedness is unexplored. Here, we provide empirical, numerical and analytical evidence that the in-block nestedness function lacks a resolution limit, and thus our capacity to detect correct partitions in networks via its maximization depends solely on the accuracy of the optimization algorithms.